TNO develops UWiSE module for efficient offshore wind farm decommissioning

TNO is anticipating the future of wind farm decommissioning with the specially designed UWiSE decommission module. This module helps offshore wind farm owners and contractors make intelligent, well-founded and accurate decommissioning decisions, well before the wind turbines or floating solar farms need removing.

The (Unified Wind Farm Simulation Environment (UWiSE) Decommission module has been developed by TNO as part of EoLO-HUBs, an EU co-funded collaborative project aimed at finding novel ways to recycle high-value materials from wind turbine blades.

The power to predict decommissioning costs and outcomes

The UWiSE decommission module enables wind farm owners and contractors to quantitatively evaluate the impact of offshore operational details, vessel choice, weather delays, resource variations and work sequence. Based on the information entered, it helps engineers to accurately estimate decommissioning campaign costs and durations.

Having all the prerequisites in place allows wind farm owners and contractors to specify the project dependencies. Decommissioning risks are mitigated thanks to the tool’s ability to quantify the effects of fluctuating weather conditions, activity duration uncertainties and greenhouse gas emissions. The flexible setup also lets you simulate the decommissioning of an entire wind turbine (foundation, cables and auxiliary components) or just a blade, for instance.

“A major value of UWiSE is the option for offshore asset owners and contractors to collaborate with TNO, so they can introduce innovations sooner, cut down on decommissioning costs and ultimately help reduce the impact on our environment.”

Simone Mancini, Project manager wind energy, TNO

Flexibility on a user-friendly

As input for the UWiSE Decommission tool, the user has an Excel input file for detailed project information (fixed costs, farm data, assets, ports, vessels, staffing, etc.), site-specific weather data for evaluating weather dependencies, and a block-diagram description of method statements in the user interface.

Whereas the project assets are typically fixed, there are flexible considerations by using different resources or changing how the decommissioning process is carried out. For instance, you can choose a faster vessel which has other limitations (in the Excel input file), or have the vessels work in parallel as opposed to serial operations (in the block diagram). By comparing the simulated outcomes, you can make a substantiated decision on the optimal decommissioning strategy.

Ready to support offshore decommissioning

The team at TNO is currently running a verification case to test UWiSE Decommission against other existing models. As it is built on the same platform and uses the same software brain as the UWiSE installation and maintenance modules, as well as their long track record in modelling and validation, TNO has full confidence in the tool’s effectiveness and accuracy.

Companies who are interested can get in touch with TNO to discuss how UWiSE can help them reach their offshore decommissioning goals. This can either be through purchasing a licence to use the platform or by partnering with TNO to investigate further innovations to wind farm decommissioning. Together we can optimise the process, save time and costs, and discover ways to reduce the environmental impact of decommissioning offshore wind turbines and solar panels. Source: TNO

Input your search keywords and press Enter.